Es aquella ecuación que se compone de un polinomio de segundo grado de la forma Ax2+Bx2+Cx2.
Solución por formula General:
Hemos visto que una ecuación cuadrática es una ecuación en su forma ax2 + bx + c = 0, donde a, b, y c son números reales.
Pero este tipo de ecuación puede presentarse de diferentes formas:
Ejemplos:
9x2 + 6x + 10 = 0 a = 9, b = 6, c = 10
3x2 – 9x + 0 = 0 a = 3, b = –9, c = 0 (el cero, la c, no se escribe, no está)
–6x2 + 0x + 10 = 0 a = -6, b = 0, c = 10 (el cero equis, la b, no se escribe)
La fórmula genera dos respuestas: Una con el signo más (+) y otra con el signo menos (−) antes de la raíz. Solucionar una ecuación de segundo grado se limita, entonces, a identificar las letras a, b y c y sustituir sus valores en la fórmula.
La fórmula general para resolver una ecuación de segundo grado sirve para resolver cualquier ecuación de segundo grado, sea completa o incompleta, y obtener buenos resultados tiene que ver con las técnicas de factorización.
Ejemplo:
Resolver la ecuación 2x2 + 3x − 5 = 0
Vemos claramente que a = 2, b = 3 y c = −5, así es que:
En la fórmula para resolver las ecuaciones de segundo grado aparece la expresión . Esa raíz cuadrada sólo existirá cuando el radicando (b2 − 4ac) sea positivo o cero.
El radicando b2 – 4ac se denomina discriminante y se simboliza por Δ. El número de soluciones (llamadas también raíces) depende del signo de Δ y se puede determinar incluso antes de resolver la ecuación.
Entonces, estudiando el signo del discriminante (una vez resuelto), podemos saber el número de soluciones que posee:
Si Δ es positivo, la ecuación tiene dos soluciones.
Si Δ es negativo, la ecuación no tiene solución.
Si Δ es cero, la ecuación tiene una única solución.
En el ejemplo anterior el discriminante era Δ = 49, positivo, por eso la ecuación tenía dos soluciones.Obtendremos dos soluciones, una cuando sumamos a − b la raíz y lo dividimos por 2a, y otra solución cuando restamos a − b la raíz y lo dividimos por 2a.
Ejemplo de como graficar una parábola:
Orientación o concavidad:
Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax2):
Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x2 − 3x − 5
Orientación o concavidad
Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax2):
Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x2 − 3x − 5
Orientación o concavidad
Una primera característica es la orientación o concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax2):
Si a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x2 − 3x − 5
Si a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x2 + 2x + 3
Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.
muy buen trabajo Liz
ResponderBorrar